

LHCONE (SOME) THOUGHTS ON 100G

Artur Barczyk/Caltech Denver, November 2013

July 31, 2013

Artur.Barczyk@cern.ch

hep.caltech.edu

LHC Open Network Environment

- In brief, LHCONE was born to address two main issues:
 - ensure that the services to the science community maintain their quality and reliability
 - protect existing R&E infrastructures against potential "threats" of very large data flows
- LHCONE goals (from ~2011)
 - Provide some guarantees of performance
 - Large data flows across managed bandwidth that would provide better determinism than shared IP networks
 - Segregation from competing traffic flows
 - Manage capacity as # sites x Max flow/site x # Flows increases
 - Provide ways for better utilization of resources
 - Use all available resources
 - Provide Traffic Engineering and flow management capability

Leverage investments being made in advanced networking

US LHCNe

CALTECH HEP NETWORKING

LHCONE Overview

CALTECH HEP NETWORKING

Current activities split in several areas:

- Multipoint connectivity through L3VPN
 - Routed IP, virtualized service
- Point-to-point dynamic circuits
 - R&D, service prototype under development
- Common to both is logical separation of LHC traffic from the General Purpose Network (GPN)
 - Allows (in theory) traffic engineering
 - Allows trusted connections and firewall bypass
 - e.g. through Science DMZ-like site configurations
- For tasks which cannot be done with traditional methods
 - More R&D in SDN/Openflow for LHC traffic

LHCONE Today

Routed L3VPN Service, VRF

- Based on Virtual Routing and Forwarding (VRF)
- BGP peerings between the VRF domains
- Currently serving 44 LHC computing sites

• In addition, the Point-to-point Multidomain Service Prototype

Motivation for 100G

- Expect 10-fold data rates increase between now and 2021
- HEP experiments are moving towards more dynamic workflows and data management
 - reduce storage costs, consider less copies
 - dynamic caching, data movement on demand, remote data access
- This will increase network utilisation
- With deployment of 40GE server interfaces, capability to create single flow of more than 10GE
 - 10Gbps based infrastructure becomes a bottleneck
 - even with many 10G links
 - can alleviate to some extent by multi-path techniques
 - (not obvious in production, topic for R&D)

US LHCNe

CALTECH HEP NETWORKING

100G in production use

- CALTECH HEP NETWORKING
- For production use, 100+ Gbps based infrastructure must be just as resilient as we're used to from 10G
 WLCG: "Network is our most reliable resource"
- This typically means multiple, redundant paths
 - cost factor (both circuits and equipment costs)
- Some challenges might remain, e.g. efficient use of multiple paths
- System(s) to manage the capacity are (still) needed
 - just because we have 100G, does not mean we can rely on overprovisioning

Some points for investigation

- Not just capacity how can we leverage the increase in capacity in a smart way?
 - Think SDN@100G here
 - Network-Application interface @100G
 - Recent techniques like e.g. RDMA-based file transfers
- From data processing point of view:
 - What impact will reduced transfer latency have on a CDN-style system like one for LHC?
 - on workflows and their management?
 - how dynamic can we make the data movement?
 - e.g. if we can rely on data replication on demand, can we think of having only one (global?) master copy?
- There's many other questions, undoubtedly, once we start thinking of integrating 100+ G networks into the system

US LHCNe

CALTECH HEP NETWORKING

100G for LHCONE

- 100G networking between the continents is important
 LHC computing is massively distributed on a global scale
- Interest in combining 100G with SDN for
 - optimal resource utilization in the network
 - optimal resource utilization in the end-sites/systems
- Not to forget: Need a reasonable level of resiliency for production use

US LHCNe

CALTECH HEP

THANK YOU!

Artur.Barczyk@cern.ch

July 31, 2013

Artur.Barczyk@cern.ch

hep.caltech.edu