
# ESnet's 100G Network Testbed

Brian Tierney, Eric Pouyoul Berkeley National Lab / ESnet

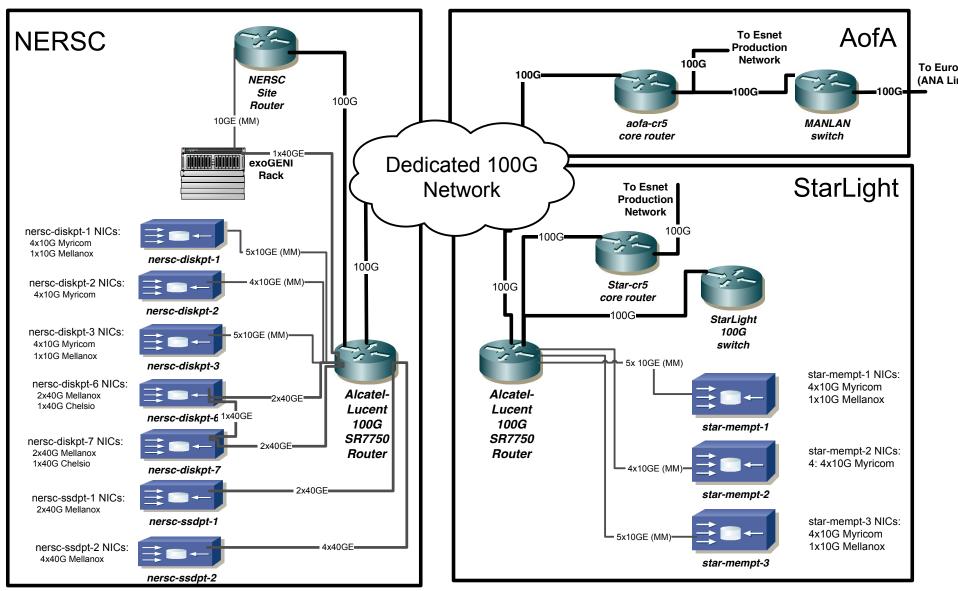
November 17, 2013










|   | 100G IP | Hubs |
|---|---------|------|
| - |         |      |
|   |         |      |



 Major R&E and International peering connections

- Office of Science National Labs
- Ames Ames Laboratory (Ames, IA)
- ANL Argonne National Laboratory (Argonne, IL)
- BNL Brookhaven National Laboratory (Upton, NY)
- FNAL Fermi National Accelerator Laboratory (Batavia, IL)
- JLAB Thomas Jefferson National Accelerator Facility (Newport News, VA)
- LBNL Lawrence Berkeley National Laboratory (Berkeley, CA)
- ORNL Oak Ridge National Laboratory (Oak Ridge, TN)
- PNNL Pacific Northwest National Laboratory (Richland, WA)
- PPPL Princeton Plasma Physics Laboratory (Princeton, NJ)
- SLAC Stanford Linear Accelerator Center (Menlo Park, CA)

### ESnet 100G Testbed



### **100G Testbed Capabilities**



This testbed is designed to support research in high-performance data transfer protocols and tools.

Capabilities:

- "bare metal" access to very high performance hosts
  - Up to 100Gbps memory to memory, and 70 Gbps disk to disk
- each project gets their own disk image, which root access
  - Can experiment with custom kernels, custom network protocols, etc.

### New "SSD" test host

4 x 40Gbps Ethernet

2 x 56 Gbps Infiniband



### SRP (SCSI over RDMA) target



- 2 x Sandy Bridge 2.9 Ghz (2 x 6 cores)
- 128 GB RAM
- 2 x Dual Port 40G Ethernet (4 x 40G)
- 1 x Dual Port Infiniband HCA
- 24 x SSD (250GB)
- 2 x HDD system drives
- CentOS 6.4

- 2 x Sandy Bridge 2.9 Ghz
- 64 GB RAM
- 1 x Dual Port Infiniband HCA
- 24 x HDD (250GB)
- 2 x HDD system drives
- ESOS (SRP-Target OS)

### **Testbed Access**



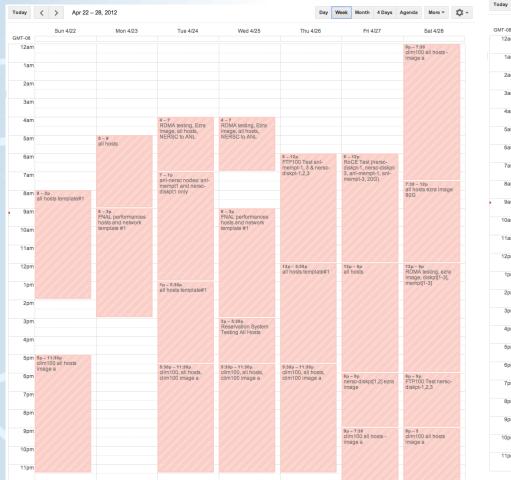
Proposal process to gain access described at:

http://www.es.net/RandD/100g-testbed/proposal-process/

Testbed is available to anyone:

- DOE researchers
- Other government agencies
- Industry

Must submit a short proposal to ESnet (2 pages)


**Review Criteria:** 

- Project "readiness"
- Could the experiment easily be done elsewhere?

### 100G Testbed: Significant Demand



7

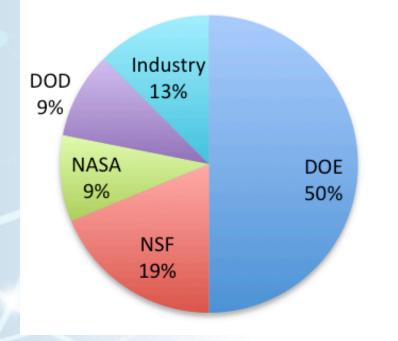


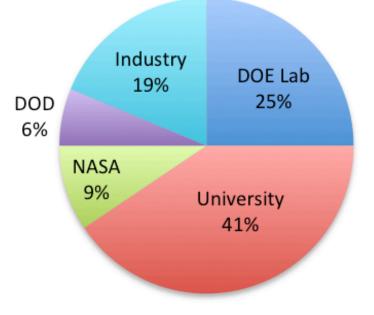


< > Apr 29 – May 5, 2012

#### 12/6/13

Lawrence Berkeley National Laboratory


### **Accepted Testbed Projects**




8

### **Researcher Funding**

## **Type of Organization**





Publications based on Testbed Results <a href="http://www.es.net/RandD/100g-testbed/publications/">http://www.es.net/RandD/100g-testbed/publications/</a>



100G Testbed became available in January, 2012.

The testbed has already provided results for 20 accepted papers!

- 2012: 8 publications
- 2013: 11 publications
- 2014: 1 already

Specific Conferences:

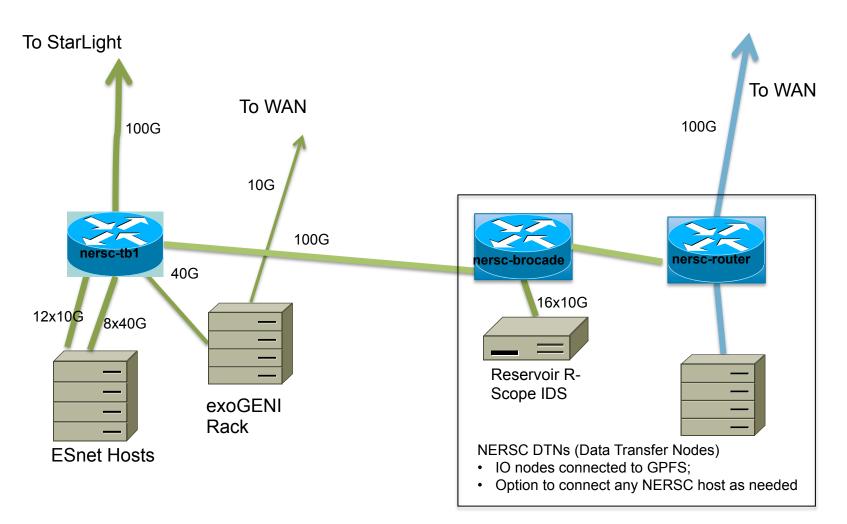
- SC12: 1 paper
- SC13: 1 paper
- NDM 2013: 4 Papers

### Industry Use of the Testbed



- Alcatel-Lucent used the testbed in May 2012 to verify the performance of its new 7950 XRS core router.
- Bay Microsystems used the testbed to verify that its 40 Gbps IBEx InfiniBand extension platform worked well over very long distances.
- Infinera used the testbed to demonstrate the telecommunication industry's first successful use of a prototype software-defined networking (SDN) open transport switch (OTS).
- Acadia Optronics used the testbed to test ITS 40 Gbps and 100 Gbps host NICs, and to debug the Linux device driver for its hardware.
- Orange Silicon Valley is using the testbed to test a 100G SSD-based video server
- Reservoir Labs is using the testbed to test their 100G IDS product under development

### "Federated" Testbed




11

Using Layer-2 circuits, external hosts can be connected to the ESnet testbed

- ESnet has 50-80G of spare capacity on much of it's footprint at this time available for testing, as does Internet2
- So far we have connected the following resources to the ESnet testbed for testing
  - FNAL: 2x40G hosts
  - BNL: 3x40G hosts
  - NERSC: 100G connection to NERSC Security router (see next slide)
  - University of Chicago: 4x10G to "Kenwood" and "Goldberg" clusters
  - NASA Goddard: 1 host with 4x40G
  - Navel Research Lab: 2x10G hosts

# ESnet 100G Testbed: NERSC Connections for 100G IDS testing



### ExoGENI Rack (https://wiki.exogeni.net/) ESnet ExoGENI Testbed 14 GPO-funded racks • Partnership between RENCI, Duke and IBM IBM x3650 M4 servers (X-series 2U) Xo in 1x146GB 10K SAS hard drive +1x500GB secondary drive 48G RAM 1333Mhz Dual-socket 8-core CPU • Dual 1Gbps adapter (management network) • 10G dual-port Chelseo adapter (dataplane) • BNT 8264 10G/40G OpenFlow switch DS3512 6TB sliverable storage iSCSI interface for head node image storage as well as experimenter slivering Each rack is a small networked cloud OpenStack-based • EC2 node sizes (m1.small, m1.large etc) http://www.exogeni.net DUKE COMPUTER CLENCE 3

12/6/13

Lessons Learned



Tuning for 40G is not just 4x Tuning for 10G

Some of the conventional wisdom for 10G Networking is not true at 40Gbps

e.g.: Parallel streams more likely to hurt than help

UDP needs to be tuned even more than TCP

"Sandy Bridge" Architectures require extra tuning as well Lots of details at http://fasterdata.es.net/science-dmz/DTN/ tuning/

### Sample results: TCP Single vs Parallel Streams

| 1 stream: iperf3 -c              | 192.168.1 | 02.9   |                |             |          |
|----------------------------------|-----------|--------|----------------|-------------|----------|
| [ ID] Interval                   | Tran      | sfer   | Bandwidth      | Retransmits |          |
| [ 4] 0.00-1.00                   | sec 3.19  | GBytes | 27.4 Gbits/sec | 0           |          |
| [ 4] 1.00-2.00                   | sec 3.35  | GBytes | 28.8 Gbits/sec | 0           |          |
| [ 4] 2.00-3.00                   |           | GBytes | 28.8 Gbits/sec | 0           |          |
| [4] 3.00-4.00                    | sec 3.35  | GBytes | 28.8 Gbits/sec | 0           |          |
| [ 4] 4.00-5.00                   | sec 3.35  | GBytes | 28.8 Gbits/sec | 0           |          |
|                                  |           |        |                |             |          |
| 2 streams: iperf3 -c             |           |        |                |             |          |
| [ ID] Interval<br>[ 4] 0.00-1.00 | Tran      | sfer   | Bandwidth      | Retransmits |          |
| [ 4] 0.00-1.00                   | sec 1.37  | GBytes | 11.8 Gbits/sec | 7           |          |
| [ 6] 0.00-1.00                   | sec 1.38  | GBytes | 11.8 Gbits/sec | 11          |          |
| [SUM] 0.00-1.00                  | sec 2.75  | GBytes | 23.6 Gbits/sec | 18          |          |
|                                  |           |        |                |             |          |
|                                  |           |        |                |             |          |
| [ 4] 8.00-9.00                   | sec 1.43  | GBytes | 12.3 Gbits/sec | 8           |          |
| [ 6] 8.00-9.00                   |           |        | 12.2 Gbits/sec |             |          |
| [SUM] 8.00-9.00                  | sec 2.85  | GBytes | 24.5 Gbits/sec | 15          |          |
|                                  |           |        |                |             |          |
| [ 4] 9.00-10.00                  |           |        | 12.3 Gbits/sec | 4           |          |
| [ 6] 9.00-10.00                  |           |        | 12.3 Gbits/sec | 6           |          |
| [SUM] 9.00-10.00                 | sec 2.86  | GBytes | 24.6 Gbits/sec | 10          |          |
|                                  |           |        |                |             |          |
| [ ID] Interval                   |           | sfer   |                | Retransmits |          |
| [ 4] 0.00-10.00                  |           | _      | 11.9 Gbits/sec | 78          | sender   |
| [ 4] 0.00-10.00                  |           |        | 11.9 Gbits/sec |             | receiver |
| [ 6] 0.00-10.00                  |           |        | 11.9 Gbits/sec | 95          | sender   |
| [ 6] 0.00-10.00                  |           |        | 11.9 Gbits/sec |             | receiver |
| [SUM] 0.00-10.00                 |           |        | 23.7 Gbits/sec | 173         | sender   |
| [SUM] 0.00-10.00                 | sec 27.6  | GBytes | 23.7 Gbits/sec |             | receiver |

### iperf3: https://code.google.com/p/iperf/

12/6/13

### Sample results: TCP On Intel "Sandy Bridge" Motherboards

| 30% Improvement usi | ng the right core!           |           |
|---------------------|------------------------------|-----------|
| nuttcp -i 192.16    | 8.2.32                       |           |
| 2435.5625 MB /      | 1.00 sec = 20429.9371 Mbps   | 0 retrans |
| 2445.1875 MB /      | 1.00 sec = 20511.4323 Mbps   | 0 retrans |
| 2443.8750 MB /      | 1.00 sec = 20501.2424 Mbps   | 0 retrans |
| 2447.4375 MB /      | 1.00 sec = 20531.1276 Mbps   | 0 retrans |
| 2449.1250 MB /      | 1.00  sec = 20544.7085  Mbps | 0 retrans |
|                     |                              |           |
| nuttcp -i1 -xc 2    | /2 192.168.2.32              |           |
| 3634.8750 MB /      | 1.00 sec = 30491.2671 Mbps   | 0 retrans |
| 3723.8125 MB /      | 1.00 sec = 31237.6346 Mbps   | 0 retrans |
| 3724.7500 MB /      | 1.00 sec = 31245.5301 Mbps   | 0 retrans |
| 3721.7500 MB /      | 1.00 sec = 31219.8335 Mbps   | 0 retrans |
| 3723.7500 MB /      | 1.00 sec = 31237.6413 Mbps   | 0 retrans |

nuttcp: http://lcp.nrl.navy.mil/nuttcp/beta/nuttcp-7.2.1.c

12/6/13



Sample results: TCP On Intel "Sandy Bridge" Motherboards: Fast host to Slower Host

```
nuttep -i1192.168.2.31410.7500 MB /1.00 sec = 3445.5139 Mbps0 retrans339.5625 MB /1.00 sec = 2848.4966 Mbps0 retrans354.5625 MB /1.00 sec = 2974.2888 Mbps350 retrans326.3125 MB /1.00 sec = 2737.3022 Mbps0 retrans377.7500 MB /1.00 sec = 3168.8220 Mbps179 retransnuttep -i1192.168.2.310 retrans2091.0625 MB /1.00 sec = 17540.8230 Mbps0 retrans2106.7500 MB /1.00 sec = 17672.0814 Mbps0 retrans2103.6250 MB /1.00 sec = 17647.0326 Mbps0 retrans2086.7500 MB /1.00 sec = 17504.7702 Mbps0 retrans
```

http://fasterdata.es.net/host-tuning/interrupt-binding/



# Sample results: UDP Tuning



18

#### Defaults:

| nuttcp - | i1 -u | -R10G | -T4 10  | .26.202 | .10   |      |
|----------|-------|-------|---------|---------|-------|------|
| 1125.48  | 44 MB | / 1.  | .00 sec | = 9441  | .1434 | Mbps |
| 1125.70  | 31 MB | / 1.  | .00 sec | = 9443  | .1295 | Mbps |
| 1125.70  | 31 MB | / 1.  | .00 sec | = 9443  | .0634 | Mbps |
| 1125.50  | 00 MB | / 1.  | .00 sec | = 9441  | .3689 | Mbps |

| 0 | / | 144062 | ~drop/pkt | 0.00 | ~%loss |
|---|---|--------|-----------|------|--------|
| 0 | / | 144090 | ~drop/pkt | 0.00 | ~%loss |
| 0 | / | 144090 | ~drop/pkt | 0.00 | ~%loss |
| 0 | / | 144064 | ~drop/pkt | 0.00 | ~%loss |

#### **Bigger Packets:**

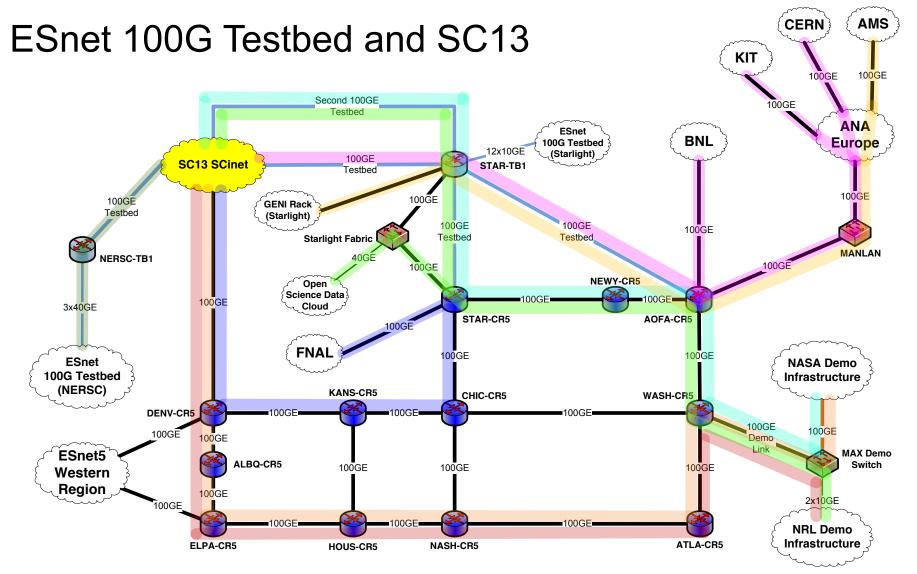
| nuttcp | -i1  | -u | -R1( | OG -T4 -18972 10.26.202.10                     |             |
|--------|------|----|------|------------------------------------------------|-------------|
| 1135.  | 5752 | MB | 1    | 1.00 sec = 9525.7906 Mbps 0 / 132717 ~drop/pkt | 0.00 ~%loss |
| 1134.  | 8051 | MB | 1    | 1.00 sec = 9519.4546 Mbps 0 / 132627 ~drop/pkt | 0.00 ~%loss |
| 1133.  | 8297 | MB | /    | 1.00 sec = 9511.2531 Mbps 0 / 132513 ~drop/pkt | 0.00 ~%loss |
| 1133.  | 6672 | MB | /    | 1.00 sec = 9509.8989 Mbps 0 / 132494 ~drop/pkt | 0.00 ~%loss |

#### **Bigger window:**

```
nuttcp -i1 -u -R10G -T4 -18972 -w4m 10.26.202.10
1182.1475 MB / 1.00 sec = 9916.4432 Mbps 0 / 138160 ~drop/pkt 0.00 ~%loss
1181.6513 MB / 1.00 sec = 9912.4488 Mbps 0 / 138102 ~drop/pkt 0.00 ~%loss
1181.6513 MB / 1.00 sec = 9912.3893 Mbps 0 / 138102 ~drop/pkt 0.00 ~%loss
1181.6855 MB / 1.00 sec = 9912.7260 Mbps 0 / 138106 ~drop/pkt 0.00 ~%loss
```

nuttcp: http://lcp.nrl.navy.mil/nuttcp/beta/nuttcp-7.2.1.c

12/6/13


## Single flow 40G Results



| ΤοοΙ      | Protocol     | Gbps | Send CPU | Recv CPU |
|-----------|--------------|------|----------|----------|
| netperf   | TCP          | 17.9 | 100%     | 87%      |
|           | TCP-sendfile | 39.5 | 34%      | 94%      |
|           | UDP          | 34.7 | 100%     | 95%      |
| xfer_test | TCP          | 22   | 100%     | 91%      |
|           | TCP-splice   | 39.5 | 43%      | 91%      |
|           | RoCE         | 39.2 | 2%       | 1%       |
| GridFTP   | TCP          | 13.3 | 100%     | 94%      |
|           | UDT          | 3.6  | 100%     | 100%     |
|           | RoCE         | 13   | 100%     | 150%     |



Lawrence Berkeley National Laboratory





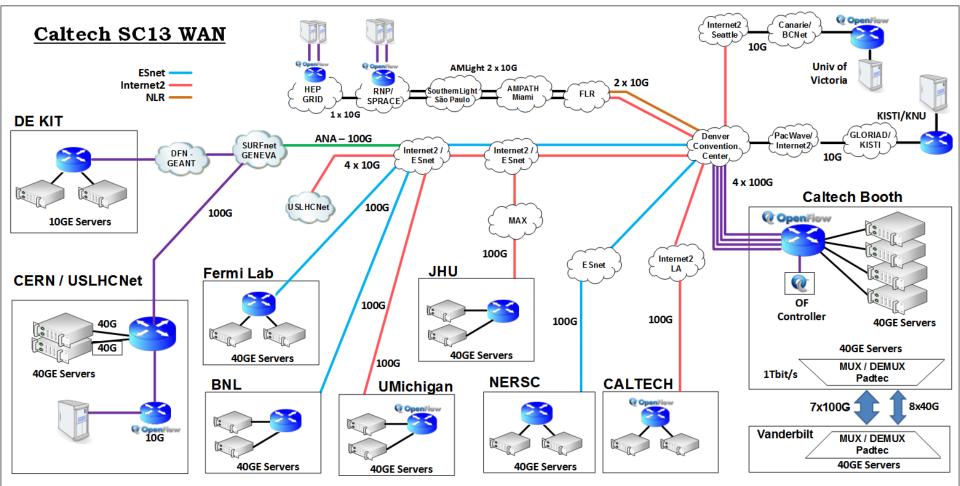
 NRL demo Northern path (20G)

 NRL demo Southern path (20G)

 NASA demo – production path (50G)

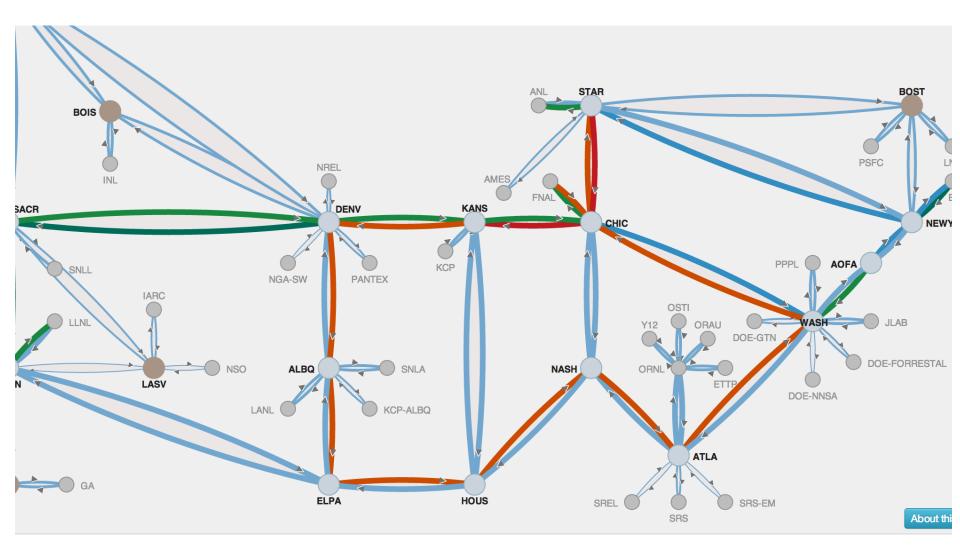
 NASA demo – testbed path (50G)

 OpenFlow/SDN demo – ANA path (100G)


 Caltech demo – ANA path (100G)

 Caltech demo – FNAL path (60G)

 Caltech demo – NERSC TB path (100G)


| SC13 (   | demos – ESnet5 map         |
|----------|----------------------------|
|          | Eli Dart, ESnet 11/14/2013 |
| FILENAME | SC13-DEMOS-V24.VSD         |

# ESnet 100G Testbed and SC13: 400Gbps to the Caltech Booth



Supporting Vendors: Mellanox, Brocade, Echostreams, Intel, Cisco, Dell, Padtec, Ciena, SGI, Seagate, FusionIO, iWnetworks, Juniper, ADVA

### Loop Test From NASA last week: my.es.net



**More Information** 

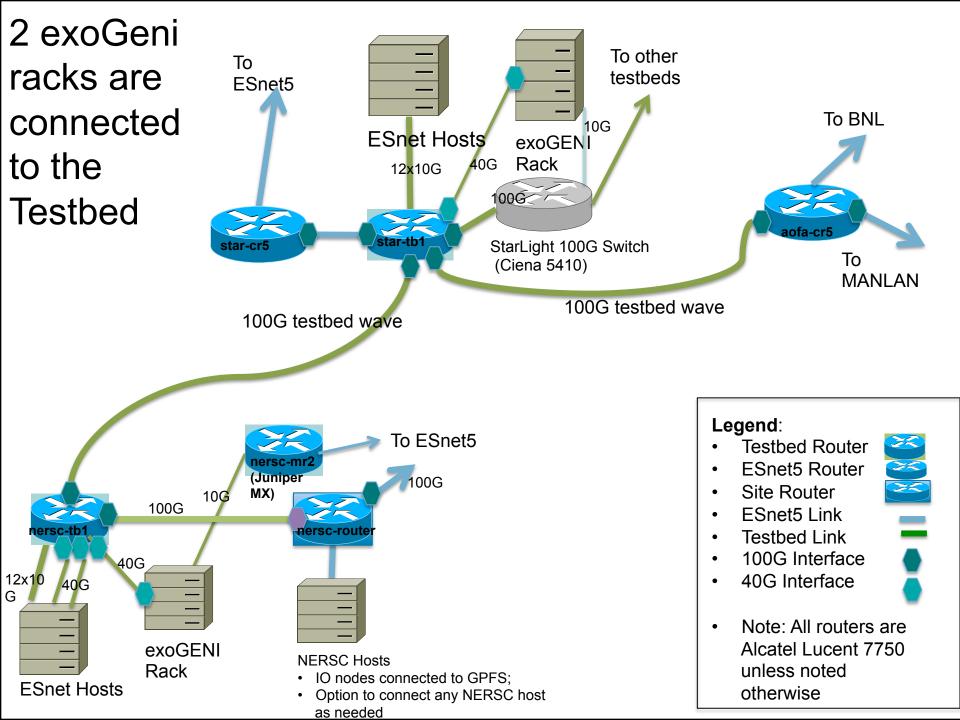


http://www.es.net/testbed/

### email: BLTierney@es.net



# **Extra Slides**


Lawrence Berkeley National Laboratory

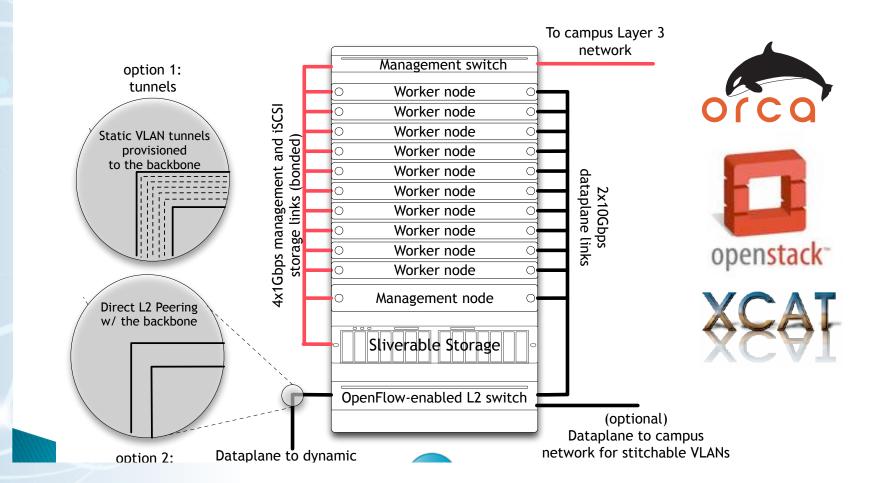
## **New SSD Host Performance**

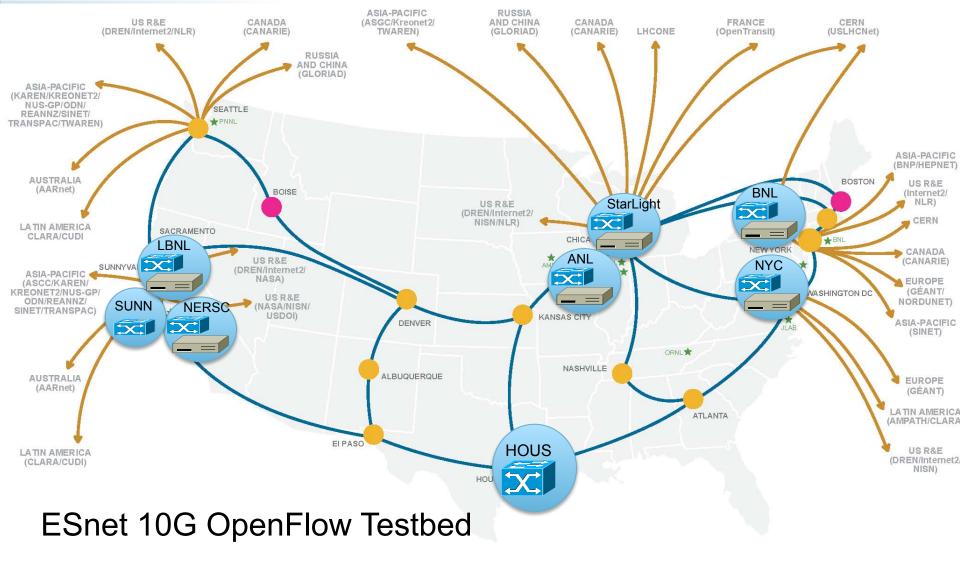


| Test                                            | incoming | outgoing | Both at once |
|-------------------------------------------------|----------|----------|--------------|
| Network only (memory to<br>memory test, nuttcp) | 75 Gbps  | 75 Gbps  | N Gbps       |
| Disk to Network test<br>(GridFTP)               | 14 Gbps  | 75 Gbps  | N Gbps       |

Note: This is using 2 40G interfaces, connecting to 2 hosts with 1 40G interface







# **OpenFlow** Testbed

Lawrence Berkeley National Laboratory

### **ExoGeNI** Rack Details









| 100G IP Hubs |  |  |
|--------------|--|--|
| 4x10G IP Hub |  |  |

 Major R&E and International peering connections

- ★ Office of Science National Labs
- Ames Ames Laboratory (Ames, IA)
- ANL Argonne National Laboratory (Argonne, IL)
- BNL Brookhaven National Laboratory (Upton, NY)
- FNAL Fermi National Accelerator Laboratory (Batavia, IL)
- JLAB Thomas Jefferson National Accelerator Facility (Newport News, VA)
- LBNL Lawrence Berkeley National Laboratory (Berkeley, CA)
- ORNL Oak Ridge National Laboratory (Oak Ridge, TN)
- PNNL Pacific Northwest National Laboratory (Richland, WA)
- PPPL Princeton Plasma Physics Laboratory (Princeton, NJ)
- SLAC Stanford Linear Accelerator Center (Menlo Park, CA)

### **OpenFlow** Testbed



- Uses 10G circuits on 100G backbone
- 8 OpenFlow Switches
  - 6 of which have 10G hosts directly connected
  - Multi-Vendor
    - NEC, Juniper, Brocade, IBM, pica8, noviflow
- Available to ESnet collaborators

# **OpenFlow Testbed Capabilities**

### Researchers can:

- Experiment with multiple types of controllers and hardware
- Experiment with multiple paths
- Connect to other testbeds

### Capabilities

- Sliceable with FlowVisor
- Support for internal and external open flow controllers
  - i.e. running within ESnet, or accessed from the internet)
- Data plane provided by ESnet OSCARS, provides QoS
  - Nationwide footprint
- Support for topology virtualization
- Integration of other ESnet services (perfSONAR, SNMP collector, Topology service, NSI)



# Sample Use of the OpenFlow Testbed

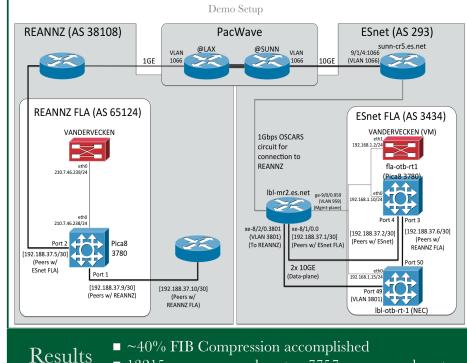
**Demonstration at Open Networking Summit (April)** •

#### Front-Line Assembly DEMO

First international BGP peering using SDN in production between two national-scale network providers

Innovative FIB compression enables using commodity OpenFlow switches for peering

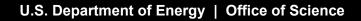
Leverages community open-source packages. RouteFlow and Quagga


### Insights

- SDN networks can interface with existing • Internet
- New techniques need to be developed to • scale controller-based networking

Demonstration Team:

Google Network Research - Josh Bailey, Scott Whyte REANNZ - Dylan Hall, Sam Russell, James Wix, Steve Cotter ESnet - Inder Monga, Chin Guok, Eric Pouvoul, Brian Tierney Acknowledgements - Joe Stringer

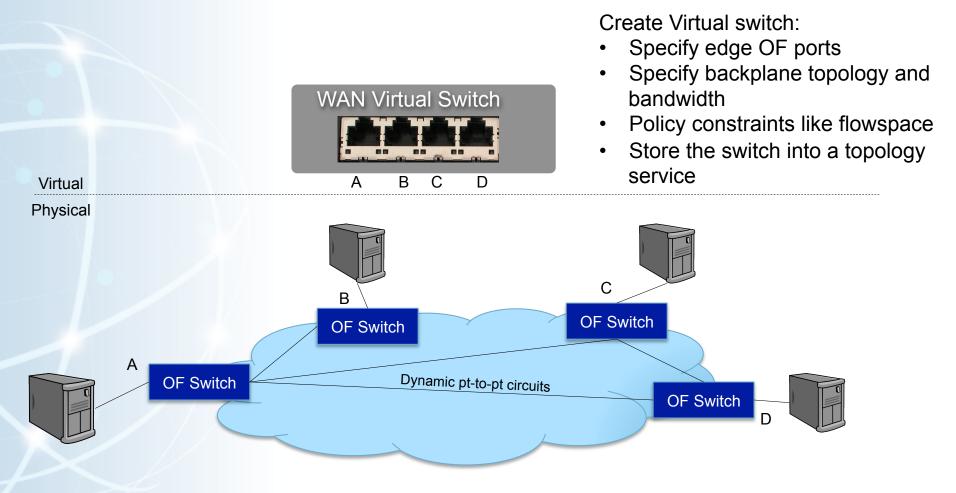





ESnet

■ 13215 uncompressed routes, 7757 compressed routes

Google




Lawrence Berkeley National Laboratory

# OpenFlow Testbed Experiment: A Virtual Switch Implementation:



33



### © Inder Monga OFC/NFEC, 2013

12/6/13