# Big science challenges related to monitoring and understanding surface and ground water systems

Christopher D. Elvidge, Ph.D.
Earth Observation Group
NOAA National Geophysical Data Center
Boulder, Colorado 80305 USA
<a href="mailto:chris.elvidge@noaa.gov">chris.elvidge@noaa.gov</a>

August 19, 2014

#### Challenges

- Global surface water grid on weekly increments at 30 meter resolution
- Improved remote sensing capabilities for ground water
- Science specialization



Landsat 8 detection of flooding in the Lower Mekong, August 8, 2014.

### Cloud and Night Obscuration on Surface Water Observations



- Traditional satellite data source (e.g. Landsat)
   capabilities for mapping the spatial extent of
   surface waters and flooding are limited by night
   and opaque clouds.
- Long wave infrared works day or night, but detection of surface waters in LWIR is prone to errors and LWIR is still subject to cloud obscuration.
- Active microwave works well, but is not frequently collected and is available as a commercial service. One possible option is the DLR TerraSAR-X with an 11 day repeat cycle at equator?
- Passive microwave has coarse spatial resolution.
   Is it possible to design sensors with higher spatial resolution capabilities?

#### Mapping spatial extents of surface water



ATMS Image showing detection of lakes. ATMS spatial resolution is too coarse for hydrologic applications.



TerraSAR-X image showing flooding of the Mississippi River.

## Limited remote sensing capabilities for ground water detection / monitoring



- Traditional remote sensing sources are unable to detect and monitor ground water
- NASA/DLR Gravity Recovery and Climate Experiment sensor has been able to detect changes in the mass of land surfaces, linked to groundwater changes. However, these product have coarse spatial resolution.
- Can gravity mapping from space be extended to higher spatial resolution?

#### Science Specialization

The complexities of individual data sources or models tend to absorb individual scientists and science teams. This limits the synergistic combination of data sources and science teaming.